

GOVERNMENT OF ANDHRA PRADESH COMMISSIONERATE OF COLLEGIATE EDUCATION

INNER PRODUCTS

PARALLELOGRAM LAW

MATHEMATICS

GOGULAMUDI.SYAM PRASAD REDDY, M.Sc.,M.Phil.,B.Ed.,SET

P.R.GOVT.COLLEGE(A):KAKINADA Email ID :syam.g.reddy@gmail.com

Learning Objectives

Students will be able to recognize the following properties of a parallelogram:

- Describe the relationships between opposite sides in a parallelogram.
- i.e Opposite sides are parallel and Opposite sides are equal in length.
- Describe the relationship between opposite angles in a parallelogram.
- i.e Opposite sides are equal in measure.
- Describe the relationship between consecutive angles in a parallelogram.
- The sum of two adjacent angles is 180° .
- Describe the relationship between the two diagonals in a parallelogram.
- i.e The diagonals bisect each other.

In <u>mathematics</u>, the simplest form of the **parallelogram law** (also called the **parallelogram identity**) belongs to elementary <u>geometry</u>.

It states that the sum of the squares of the lengths of the four sides of a <u>parallelogram</u> equals the sum of the squares of the lengths of the two diagonals.

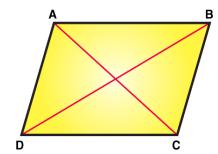
We use these notations for the sides: AB, BC, CD, DA.

But since in **Euclidean geometry** a parallelogram necessarily has opposite sides equal, that is,

$$AB = CD$$
 and $BC = DA$,

the law can be stated as

$$2 AB^2 + 2 BC^2 = AC^2 + BD^2$$



If the parallelogram is a <u>rectangle</u>, the two diagonals are of equal lengths AC = BD,

so $2 AB^2 + 2 BC^2 = 2 AC^2$ and the statement reduces to the <u>Pythagorean theorem</u>.

Parallelogram Law Proof

Let
$$AD=BC = x$$
, $AB = DC = y$, and $\angle BAD = \alpha$

Using the law of cosines in the triangle BAD, we get

$$x^2 + y^2 - 2xy \cos(\alpha) = BD^2$$
—(1)

We know that in a parallelogram, the adjacent angles are supplementary.

So
$$\angle ADC = 180 - \alpha$$

Now, again use the law of cosines in the triangle ADC

$$x^2 + y^2 - 2xy \cos(180 - \alpha) = AC^2$$
—(2)

Apply trigonometric identity cos(180 - x) = -cos x in (2)

$$x^2 + y^2 + 2xy \cos(\alpha) = AC^2$$

Now, the sum of the squares of the diagonals $(BD^2 + AC^2)$ are represented as,

$$BD^2 + AC^2 = x^2 + y^2 - 2xy\cos(\alpha) + x^2 + y^2 + 2xy\cos(\alpha)$$

Simplify the above expression, we get;

$$BD^2 + AC^2 = 2x^2 + 2y^2 - (3)$$

The above equation is represented as:

$$BD^2 + AC^2 = 2(AB)^2 + 2(BC)^2$$

Hence, the parallelogram law is proved.

The Parallelogram Identity for Inner Product Spaces

If V is an inner product space and α , $\beta \in V$ then the sum of squares of the norms of the vectors $\alpha+\beta$ and $\alpha-\beta$ equals twice the sum of the squares of the norms of the vectors α and β , that is: $||\alpha+\beta||^2+||\alpha-\beta||^2=2(||\alpha||^2+||\beta||^2)$

Statement:Let V be an inner product space and let α , $\beta \in V$. Then,

$$||\alpha + \beta||^2 + ||\alpha - \beta||^2 = 2(||\alpha||^2 + ||\beta||^2)$$

Proof:

$$||\alpha + \beta||^2 = \langle \alpha + \beta, \alpha + \beta \rangle = \langle \alpha, \alpha \rangle + \langle \alpha, \beta \rangle + \langle \beta, \alpha \rangle + \langle \beta, \beta \rangle$$
$$= ||\alpha||^2 + ||\beta||^2 + \langle \alpha, \beta \rangle + \langle \beta, \alpha \rangle \quad \dots \dots (1)$$

and
$$||\alpha - \beta||^2 = \langle \alpha - \beta, \alpha - \beta \rangle = \langle \alpha, \alpha \rangle + \langle \alpha, -\beta \rangle + \langle -\beta, \alpha \rangle + \langle -\beta, -\beta \rangle$$

$$= ||\alpha||^2 + ||\beta||^2 - \langle \alpha, \beta \rangle - \langle \beta, \alpha \rangle \qquad \dots (2)$$

Adding (1) and (2) we get

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2)$$

Geometrical interpretation of Parallelogram law

Let α , β be two vectors in the inner product space R^3 with standard inner product. In 3-D space R^3 we can take $\alpha = \overline{AB}$, $\beta = \overline{BC}$ So that $||\alpha|| = AB$, $||\beta|| = BC$ where A, B, C, D are points . Then the vectors $\alpha + \beta$, $\alpha - \beta$ represents the diagonals \overline{AC} , \overline{DB} of the parallelogram ABCD.

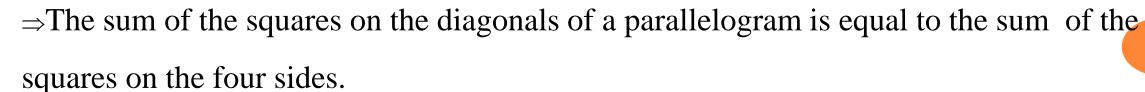
So,
$$\|\alpha + \beta\| = AC$$
 and $\|\alpha - \beta\| = DB$.

From the parallelogram law theorem,

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2)$$

$$\Rightarrow AC^2 + DB^2 = 2 (AB^2 + BC^2)$$

$$= AB^2 + BC^2 + CD^2 + DA^2$$



Thank you